

SCAlable & ReconfigurabLe

Electronics plaTforms and Tools

SCARLETT

From the Integrated Modular Avionics the First Generation architecture to the Distributed Modular Electronics solution

SCARLETT Collaborative Project - Consortium

SCARLETT: Large-scale integrating project **38 Partners 16 countries** Budget: 40 mln EUR Leader: THALES France **Large Industrial Companies:** Airbus, SAGEM, GEA,... **Public Research centers:** ONERA, NAL, ... **Industrial Research** centers **SMEs Universities: Bremen**, Bristol, Hamburg, Nottingham, Rzeszów

Collaborative Project - Schedule

		Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12
SP/WP N	WP title		2008			2009				2010			2011
SP0	Management												
SP1	Requirements, Architecture and Process Definition												
WP1.1	Aircraft Level Requirements												
WP1.2	System Level Requirements (Incl. New functions)		·	:									
WP1.3	Platform Requirements and DME Architecture												
WP1.4	Process and Demonstrations Definition												
WP1.5	Certification Of Reconfiguration												
WP1.6	Standardisation												
SP2	Development of Avionics Solutions												
WP2.1	DME Operating System and Middleware services Solutions												
WP2.2	Core Electronics Solutions (CPM, Network)												
WP2.3	Remote Electronics Solutions (RDC, RPC, REU)												
WP2.4	Toolset and Simulators Development												
WP2.5	Common Packaging Concepts for Interchangeability												
SP3	Platform Integration												
WP3.1	Integration at module Level												
WP3.2	Integration at Generic Platform Level												
WP3.3	Application DevIpmt for Demonstration												Í I
SP4	Demonstration of DME platform capabilities												
WP4.1	High Performances Data Distribution Capability												
WP4.2	VO Intensive Capability												
WP4.3	High Criticality Capability												
WP4.4	Reconfiguration and Maintenance Capability												
SD5	Results Assessment Exploitation and Discomination												
WP5.1	SCADI FTT Desuits Assessment												
WP5.2	Dissemination												
WP5.3	Exploitation												
	Exploitation		1	1									1

Next generation IMA platform will need to provide more computing power and interface capability

 Volume / weight / power consumption constraints will remain

Additional market expectation

Additional market expectation

SCARLETT Approach

SCARLETT General: Changes from IMA 1G to 2G

IMA 2G will provide the system designer with more options for integration in terms of computing power and communication

- IMA 2G increases the integration level in terms of
 - Criticality level of hosted systems
 - Number of hosted systems in IMA
 - System integration level
- → IMA 2G means an increased complexity in terms of technology and processes
- → IMA 2G objective is to optimize tool usage and their processes

Definitions

- Common Resources An IMA Component which can be configured to perform a variety of functions
- AFDX Avionic Full Duplex Switched Ethernet
- IMA Perimeter The list of systems hosted by IMA Components

Only a few different hardware modules:

- CPM Core Processing Module
- RPC Remote Power Centre
- REU Remote Electronics Unit
- RDC Remote Data Concentrator
- IRDC Intelligent RDC
- IOM Input Output Module
- Smart Device (Sensor or Actuator)

SCARLETT Schedule

SP3. Platform integration

SP3. Platform integration

SEVENTH FRAMEWORK PROGRAMME

SP3. Platform integration

WP3.3. Application Development for Demonstration (Leader: General Electric Aviation, UK)

T1. High Performances Data Distribution

demonstration

- T2. I/O intensive demonstration
- **T3. Time Critical demonstration**
 - Braking Control Application
 - Fire/Smoke Detection Control Function
 - Elevator Control Application (RUT)

T4. Reconfiguration and Maintenance demonstration

Indirect (Fly-by-Wire) Flight Control System

Rate Command / Attitude Hold Control

Designers' tasks:

- Structure of pitch control system
- Control law calculation
- Properties of actuators and actuators' controllers
- Synchronization of actuators' load moments

Elevator Control Application

Time Critical Systems

- Guaranteed (maximum) Response time
- Systems who have to perform a defined function within a time period
 - Maximum response time t < t_{MAX}
 - Within a defined time period $t_{MIN} < t < t_{MAX}$
 - Only periodic functions so far
- Avionics must support:
 - Short periods / high rate
 - Must provide low latencies
 - Must provide deterministic behaviour
- **Real Time Operating System Time Critical Requiments**
 - VxWorks Wind River
 - PikeOS SysGo
 - □ ARINC 653 Avionics application software standard interface

Structure of the elevator control application

Flight Computer Modules

- 0 (HC) Handling Control Module
- 1 (PS) Pitch Stabilization Module
- 2 (AS) Actuators Synchronization Module
- 3 (AC1) Actuator Controller No 1
- 4 (AC2) Actuator Controller No 2

Modules for simulation and testing

- 5 (AR) Actuators and Elevator Dynamics Model
- 6 (DA) Model of Aircraft Longitudinal Dynamics
- 7 (PT) Model of Pilot's Steering Signal

Cooperation fields for Aeronautical Research and Technology – Rzeszów, 14.12.2009 Page 18

Schedule & Progress of WP3.3 Elevator Control Application / RUT

SCARLE

SCARL

Thank you for your attention