Projekt kluczowy Nowoczesne technologie materiałowe stosowane w przemyśle lotniczym

Plastyczne kształtowanie lotniczych stopów AI (w tym Al-Li) oraz Ti

Politechnika Śląska, Politechnika Rzeszowska, Politechnika Lubelska, Politechnika Warszawska, Politechnika Częstochowska

 Wyniki badań

 Kształtowanie plastyczne z dużymi szybkościami odkształcenia lotniczych stopów aluminium i tytanu
 Opis zmian mikrostruktury oraz właściwości mechanicznych modelowych stopów Al – Li
 Opis zmian mikrostruktury oraz właściwości mechanicznych modelowych stopów Al – Li
 Opis zmian mikrostruktury oraz właściwości mechanicznych modelowych stopów Al – Li
 Opis zmian mikrostruktury oraz właściwości mechanicznych modelowych stopów Al – Li
 Opis zmian mikrostruktury oraz właściwości mechanicznych modelowych stopów Al – Li
 Opis zmian mikrostruktury oraz właściwości mechanicznych modelowych stopów Al – Li
 Opis zmian mikrostruktury oraz właściwości mechanicznych modelowych stopów Al – Li
 Opis zmian mikrostruktury oraz właściwości mechanicznych modelowych stopów Al – Li
 Opis zmian mikrostruktury oraz właściwości mechanicznych modelowych stopów Al – Li
 Opis zmian mikrostruktury oraz właściwości mechanicznych modelowych stopów Al – Li
 Opis zmian mikrostruktury oraz właściwości mechanicznych modelowych stopów Al – Li
 Opis zmian mikrostruktury oraz właściwości mechanicznych modelowych stopów Al – Li
 Opis zmian mikrostruktury oraz właściwości mechanicznych modelowych stopów Al – Li
 Opis zmian mikrostruktury oraz właściwości mechanicznych modelowych stopów Al – Li
 Opis zmian mikrostruktury oraz właściwości mechanicznych modelowych stopów Al – Li
 Opis zmian mikrostruktury oraz właściwości mechanicznych modelowych stopów Al – Li
 Opis zmian mikrostruktury oraz właściwości mechanicznych modelowych stopów Al – Li
 Opis zmian mikrostruktury oraz właściwości mechanicznych modelowych stopów Al – Li
 Opis zmian mikrostruktury oraz właściwości mechanicznych modelowych stopów Al – Li

AI - Li - Zr AI - Li - Cu - Zr Stan wyjściowy

Umowna granica plastyczności σ₀₂

Wytrzymałość na rozciąganie σ "

AI - Li - Cu - Zr Stan wyjściowy

Rys. 5. Pomiary właściwości mechanicznych

Wnioski

- Wyciskanie hydrostatyczne doprowadziło do zmniejszenia średniej wielkości ziarna z około 30 µm do 0,39 µm w stopie AI – Li oraz z 22 µm do 0,31 µm w stopie z dodatkiem Zr.
- Na podstawie przeprowadzonych pomiarów mikrotwardości można stwierdzić, że otrzymana mikrostruktura po HE jest jednorodna zarówno na przekroju zgodnym jak i porzecznym do kierunku wyciskania.
- Wyniki badań właściwości mechanicznych wskazują na około dwukrotny wzrost $\sigma_{0.2}$ oraz σ_m w badanych stopach w odniesieniu do stanu wyjściowego.

Wyniki badań

Mikrostruktura i właściwości blach bimetalicznych Ti-Ni wytwarzanych metodą zgrzewania wybuchowego

UNIA EUROPEJSKA

EUROPEJSKI FUNDUSZ

ROZWOJU REGIONALNEGO

Badanym materiałem były blachy Ti-Ni o wymiarach (1+1)x494x1200 mm, platerowane wybuchowo. Płytę podstawową stanowił nikiel, natomiast tytan – płytę lotną.

Rys. 13. Mikrostruktura blachy bimetalicznej Ti-Ni platerowanej wybuchowo, stan wyjściowy

Rys. 14. Mikrostruktura plateru Ti-Ni w okolicy złącza – widoczne rozdrobnienie struktury

> <u>Atom %</u> <u>Error</u>

+/- 0.40 +/- 0.27

+/- 0.23

Rys. 15. Rozkład mikrotwardości wzdłuż linii prostopadłej do linii złącza

Nikiel						Tytan			
<u>lement</u> Line	<u>Weight %</u>	<u>Weight %</u> Error	<u>Atom %</u>	<u>Atom %</u> Error	E	<u>Element</u> Line	<u>Weight %</u>	<u>Weight %</u> Error	<u>Atom %</u>
Ti K	2.76	+/- 0.08	3.36	+/- 0.10		Ti K	85.79	+/- 0.39	88.22
<u>Fe K</u>	1.06	+/- 0.08	1.11	+/- 0.08		<u>Ni K</u>	12.14	+/- 0.33	10.19
<u>Ni K</u>	96.18	+/- 0.72	95.53	+/- 0.71		<u>Cu K</u>	2.06	+/- 0.30	1.60
<u>otal</u>	100.00		100.00			<u>Total</u>	100.00		100.00

Rys. 2. Po odkształceniu metodą HE (ε = 2.4) (mikroskopia optyczna)

Rys. 3. Po odkształceniu metodą HE (ε = 2.4) (mikroskopia transmisyjna)

Tabela 1. Parametry stereologiczne - HE (ϵ = 2.4)

Rys. 6. Badany materiał

Tytan

z pojedynczymi falami

Obserwacje złącza

1 Ji 100 μm

Rys.. 9. Próbka z krańcowego fragmentu blachy, złącze płaskie

Rys.. 7. W pobliżu miejsca pobudzenia złącze płaskie,

Rys. 8. Próbka pobrana w pewnej odległości od miejsca

pobudzenia, złącze wykazuje wyraźnie falisty charakter

Czarną strzałką oznaczono kierunek przebiegu spajania.

0 2 4 6 8 10 12 14 16 18 20 -Fe keV klm - 26 - Fe keV

Rys. 16. Analiza składu chemicznego wykonana przy uzyciu przystawki EDS mikroskopu skaningowego Hitachi S-2600N.

 75

 60

 75

 60

 75

 75

 75

 75

 76

 77

 78

 79

 79

 70

 70

 70

 70

 70

 70

 70

 70

 70

 70

 70

 70

 70

 70

 70

 70

 70

 70

 70

 70

 70

 70

 70

 70

 70

 70

 70

 70

 70

 70

 70

 70

 70

 70

 70

 70

 70

 70

 70

 70

 70

 70

Rys. 17. Analiza liniowa zawartości pierwiastków w strefie złącza

Stop	Średnia wielkość ziarna d _{eq} [μm]	Odchylenie standardowe SD (d _{eq})	Współczynnik zmienności CV (d _{eq})	
Al – 2,3 Li	0,39	0,12	0,29	
Al – 2,2 Li – 0,1 Zr	0,31	0,13	0,35	
Al – 2,2 Li – 1,2 Cu – 0,1 Zr	_	-	-	

Rys. 10. Obserwacje złącza (czarną strzałką oznaczono kierunek spajania)

	<u>Ti-K</u>	<u>Fe-K</u>	<u>Ni-K</u>
<u>Base (6)(2)_pt1</u>	86.25	1.23	12.51
<u>Base (6)(2)_pt2</u>	2.39	1.01	96.61
<u>Base (6)(2)_pt3</u>	49.18	1.40	49.42
<u>Base (6)(2)_pt4</u>	3.20	0.86	95.93
<u>Base (6)(2)_pt5</u>	86.12	0.91	12.97

Rys. 18. Wyniki analizy punktowej składu chemicznego bimetalu Ti-Ni w stanie wyjściowym. Wyniki dla punktu 3 obrazują skład widocznego na zdjęciu przetopienia.

Rys. 4. Pomiary mikrotwardości

Rys. 11. Mikrostruktura bimetalu Ti-Ni w stanie wyjściowym – materiał podstawowy (nikiel)

Rys. 12. Mikrostruktura bimetalu Ti-Ni w stanie wyjściowym – materiał nakładany (tytan)

Wnioski

- zmiana charakteru złącza wzdłuż kierunku łączenia świadczy o niestabilności parametrów procesu, w szczególności szybkości spajania
- w obszarze złącza mikrostruktura obu łączonych materiałów jest zaburzona, wystąpiło rozdrobnienie i odkształcenie ziaren, co wiąże się również z umocnieniem materiału w tym obszarze
- na powierzchni złącza znajdują się niewielkie obszary fazy przetopionej, umiejscowione w zawinięciach fal. Obszary te są stopem obu łączonych metali, mogą różnić się między sobą wielkością i składem chemicznym.

PROJEKT WSPÓŁFINANSOWANY PRZEZ UNIĘ EUROPEJSKĄ ZE ŚRODKÓW EUROPEJSKIEGO FUNDUSZU ROZWOJU REGIONALNEGO