Projekt kluczowy Nowoczesne technologie materiałowe stośowane w przemyśle lotniczym

SPOTKANIE PANELI EKSPERTÓW 28-29 Czerwca 2010

Nowoczesne pokrycia barierowe na krytyczne części silnika

Politechnika Śląska, Politechnika Warszawska, Politechnika Rzeszowska, Politechnika Lubelska, Uniwersytet Rzeszowski

Wyniki badań

Celem badań było wyznaczanie rozkładu temperatur w objętości łopatki silnika odrzutowego. Rozważano dwa przypadki: łopatka z pokryciem ceramicznym ochronnym TBC o typowym składzie ZrO₂–6–8 wt% Y₂O₃ oraz bez wykonanego pokrycia. Łopatka posiadała otwór chłodzący o kształcie dopasowanym do kształtu łopatki. Model umieszczony był w kanale stanowiącym wycinek wirnika przez który przepływał gaz spalinowy o temperaturze 1600 K. W obu przypadkach stosowano takie same warunki brzegowe dotyczące wartości natężenia przepływu powietrza chłodzącego oraz gazów spalinowych.

Tabela 3. Energia wiązań, stan chemiczny oraz udział atomowy pierwiastków metalicznych wchodzących w skład warstwy utlenionej w temp. 700°C w powietrzu (po 15 min bombardowania powierzchni próbki jonami Ar⁺)

Nazwa	Energia wiązania [eV]	Zawartość [At. %]	Stan chemiczny
Ti2p3	455,8	14,9	Ti azotek (TiN0.24)
Ti2p3	459,4	13,5	Ti tlenek tytanu (TiO ₂)
TOO		0 0	

Rys.9. Rozkład temperatury silnika podczas rozruchu- wzdłuż linii 1

Wnioski

- Metoda termograficzna może być użyta jako precyzyjne narzędzie do bezinwazyjnych badań rozkładów pól temperaturowych łopatek silników odrzutowych.
- Pomiary kamerą termograficzną pozwoliły na zaobserwowanie charakterystycznych punktów pracującego silnika odrzutowego

Przykłady współpracy z przemysłem lotniczym

Badania rozkładu temperatury obudowy silnika zostały wykonane w hali produkcyjnej WSK PZL Rzeszów, ustalono istnienie niepożądanych punktów podwyższonej temperatury na obudowie silnika, co wymaga dodatkowego cyklu badań termograficznych

Wyniki badań

Wyniki badań struktury i właściwości dyfuzyjnej warstwy międzymetalicznej typu:

2-Theta-Scale

1050 900 750 600 450 300 150

Binding Energy / eV

dziesięciu 24h cyklach utleniania w temperaturze

700C (widmo zarejestrowano po 15 minutach

Rys. 18. Widmo przeglądowe powierzchni próbki po

trawienia powierzchni próbki jonami Ar⁺)

N1s C1s

1. Ti 2. A1203

3. TiO2

1600000 – Ti LMM

O KLL

1400000

1200000

800000

600000

400000

200000

O 1000000

Rys. 16. Morfologia warstwy wytworzonej w procesie CVD i dziesięciu 24h cyklach utleniania w atmosferze powietrza w temperaturze 700C na podłożu Ti6Al4V

17. Widmo XRD dla próbki Ti6Al4V po procesie CVD i dziesięciu 24h cyklach utleniania w atmosferze powietrza w temperaturze 700C

międzymetalicznych eksponowane w środowisku 0,1M H₂SO₄ i 0,1M Na₂SO₄ w porównaniu do materiału wyjściowego

Cu. Ka.; 1.541837

Środowisko	Materiał	I _{kor} (μA/cm²)	E _{kor} (mV)		
	Ti6Al4V (podłoże)	0,18	-85		
0,1M H ₂ SO ₄	Ti6Al4V z warstwą	8,1	-30		

1200	1250	1300	1350	1400	1450	1500	1550	 1600	0 +	1250	1300	1350	1400	1450	1500	1550	
Total Temperature (k)							Total Temperature (k)										
	Rys 2. Łopatka z pokryciem ochronnym								Rys. 3. Łopatka bez pokrycia ochronnego								

Wnioski

- Dla łopatki z wykonanym pokryciem, główny przedział przypada na zakres temperatur 1325 – 1375 K i stanowi 48,5 %. W łopatce bez wykonanego pokrycia wspomniany zakres stanowi 22% zaś pozostałe udziały leżą w granicach 1375 – 1500 K. Jest to zarazem dowodem korzystnego wpływu powłoki ochronnej zabezpieczającej przed nadmiernym nagrzewaniem łopatki podczas pracy.
- Najbardziej narażonym na wpływ temperatur jest tylnia część łopatki, najdalej oddalona od otworu chłodzącego. W obu przypadkach występują tam jednakowe temperatury 1500 K. Nasuwa się zatem wniosek, by jak najlepiej wykorzystać efekty stosowania powłok TBC należy także prawidłowo zaprojektować układ chłodzący łopatkę.

Wyniki badań

Analiza badań termograficznych systemów pomiarowych oraz dobór współczynników emisyjności badanych materiałów w celu określenia wartości temperaturowych Wykonano pomiary rozkładu pola temperaturowego rozgrzanej łopatki silnika odrzutowego oraz sporządzono mapę rozkładu temperatur uruchamianego silnika odrzutowego

Wybrane cechy: •Detektor 640x480 pikseli •Zakres pomiarowy -20 do 60°C Podzakres 1 -40 do 120°C Podzakres 2 0 do 500°C Podzakres 3: Podzakres 4: 200 do 2000°C Rozdzielczosc: 0.03°C Czestotliwosc pracy: 30Hz Automatyczne ostrzenie •Zlozenie zdjecia widzialnego i termowizyjnego •Wbudowana pamiec czasu rzeczywistego Przesyla danych poprzez IEEE1394 •Notatka glosowa •IP54

TiAl₂+TiAl+Ti₃Al wytworzonej na podłożu dwufazowego (+) stopu tytanu Ti6Al4V metodą CVD z użyciem par AICI₃. Warstwy te charakteryzują się wysoką żaroodpornością w porównaniu do materiału podłoża.

W celu scharakteryzowania korelacji struktury i właściwości wytworzonej warstwy międzymetalicznej zastosowano następujące techniki badawcze: badania składu fazowego (XRD, XPS), badania skaningowe (SEM), składu chemicznego (EDS), wykonano również badania odporności korozyjnej oraz żaroodporności.

Materiał do badań

Jako podłoża do wytworzenia warstw międzymetalicznych metodą CVD wykorzystano próbki stopu tytanu Ti6AI4V o składzie chemicznym podanym w tabeli 1.

Rys. 11. Widmo XRD dla warstwy wytworzonej w procesie CVD w temperaturze 700C na podłożu stopu tytanu Ti6AI4V

Tabela 2. Energia wiązań, stan chemiczny oraz udział atomowy pierwiastków metalicznych wchodzących w skład warstwy wytworzonej w procesie CVD

Zawartość Energia wiązania [eV] [At. %] Stan chemiczny Nazwa Fe2p3 2,5 Fe metal 707,0

Wnioski

- W wyniku wysoko-aktywnego procesu aluminiowania (CVD) w temperaturze 700C dwufazowego stopu tytanu Ti6Al4V można uzyskać warstwę międzymetaliczną typu: TiAl₂+TiAl+Ti₃Al
- Warstwa ta charakteryzuje się wysoką odpornością na korozję wysokotemperaturową w stosunku do materiału podłoża, a dyfuzyjny charakter warstwy zapewnia jej wysoką odporność na szoki termiczne powstałe podczas nagrzewania i chłodzenia.
- Warstwy międzymetaliczne z układu Ti-AI z uwagi na obecność związków aluminium nie powinny być stosowane w środowiskach mocno kwaśnych (poniżej pH=4).

Wskaźniki realizacji celów projektu

Referaty

- The analysis of processes of degradation thermal barrier coatings in conditions of exploitation; DSL2010 5 - 7 lipca 2010, Paryż, Francja.
- The influence of quantity and the distribution of cooling channels of turbine blades on level of stresses in the protective layer TBC and the efficiency of cooling; IWCMM20 8 - 10 września 2010, Loughborough, Wielka Brytnia
- G.Moskal, A. Rozmysłowska: *Cracks characterization of YSZ and RE zirconates thermal barrier* coatings obtained by APS method, Book of Abstracts, E-MRS, E-MRS 2009 Fall Meeting, Warsaw, Poland, 14-18 September 2009, Book of Abstract, 148
- G. Moskal: Characterization of NiCoCrAIY powders and coatings obtained by plasma spraying for TBC applications, E-MRS 2009 Fall Meeting, Warsaw, Poland, 14-18 september 2009, Book of Abstract, 146
- G. Moskal: Wpływ metody wytwarzania na mikrostrukturę i właściwości proszków typu ZrO2xY2O3, XXXVII Szkoła Inżynierii Materiałowej, Kraków-Krynica, 29.IX-2.10.2009, 347-352.
- G. Moskal: *Microstructural characteristics and technological properties of YSZ-type powders* designed for thermal spraying of TBC, IOP Conf. Series: Materials Science and Engineering 7 (2010) 012019, 11th European Workshop on Modern Developments and Applications in Microbeam Analysis IOP Publishing. G. Moskal: Characteristics of selected thermal properties of 8YSZ type powders produced with different methods, Europhysical Conference on Defects in Insulating Materials (EURODIM 2010).

Rys.4. Kamera termograficzna firmy NEC H-2640

- G. Moskal: Characteristics of selected thermal properties of the powders intended for plasma spraying of ceramic layers, Europhysical Conference on Defects in Insulating Materials (EURODIM 2010).
- Grzegorz Moskal, Lucjan Swadźba, Bartosz Witala: Characteristics of Thermal Properties of Gd2Zr2O7 - ZrO2xY2O3 Powder Mixtures Intended for Deposition of Gradient Layers of TBC type, 6th International Conference on Diffusion in Solids and Liquids: Mass Transfer, Heat Transfer and Microstructure and Properties.
- Grzegorz Moskal, Lucjan Swadźba, Marek Hetmańczyk, Bartosz Witala: Characteristics of phenomena in RE2Zr2O7-AI2O3 type powders in high temperature annealing conditions, 6th International Conference on Diffusion in Solids and Liquids: Mass Transfer, Heat Transfer and Microstructure and Properties.

Publikacje

• G. Moskal, A. Rozmysłowska, A. Gazda, M. Homa: Wybrane termofizyczne właściwości proszków cyrkonianowych na bazie pierwiastków ziem rzadkich typu RE2Zr2O7 (RE- Gd, La, Sm, Nd) przeznaczonych do natryskiwania cieplnego powłokowych warstw barierowych, Prace Instytutu Odlewnictwa, 2009, t. XLIX, nr 4, s. 15-26.

Prace mgr, dr, hab.

Prace inżynierskie obronione:

• A. Rozmysłowska: Charakterystyka przewodnictwa cieplnego proszków ceramicznych typy YSZ I RE2Zr2O7 przeznaczonych do natryskiwania powłokowych barier cieplnych.

Prace magisterskie planowane

- A. Rozmysłowska: Charakterystyka własności cieplnych warstw TBC.
- W. Kroker: Analiza mechanizmów degradacji warstw TBC
- M. Szewczyk: Badania struktury powłok na wybranym stopie trudnotopliwym

Prace doktorskie

• Marcin Zawadzki Kształtowanie struktury oraz właściwości powłok żaroodpornych na elementach ze stopu niobu łączonego metodą spawanie. Status: Przygotowywana do otwarcia przewodu

PROJEKT WSPÓŁFINANSOWANY PRZEZ UNIĘ EUROPEJSKĄ ZE ŚRODKÓW EUROPEJSKIEGO FUNDUSZU ROZWOJU REGIONALNEGO